Title
Courant algebroids in bosonic string theory: doctoral dissertation
Creator
Ivanišević, Ilija, 1991-
CONOR:
115684361
Copyright date
2023
Object Links
Select license
Autorstvo-Deliti pod istim uslovima 3.0 Srbija (CC BY-SA 3.0)
License description
Dozvoljavate umnožavanje, distribuciju i javno saopštavanje dela, i prerade, ako se navede ime autora na način odredjen od strane autora ili davaoca licence i ako se prerada distribuira pod istom ili sličnom licencom. Ova licenca dozvoljava komercijalnu upotrebu dela i prerada. Slična je softverskim licencama, odnosno licencama otvorenog koda. Osnovni opis Licence: http://creativecommons.org/licenses/by-sa/3.0/rs/deed.sr_LATN Sadržaj ugovora u celini: http://creativecommons.org/licenses/by-sa/3.0/rs/legalcode.sr-Latn
Language
Serbian
Cobiss-ID
Theses Type
Doktorska disertacija
description
Datum odbrane: 15.09.2023.
Other responsibilities
Academic Expertise
Prirodno-matematičke nauke
Academic Title
-
University
Univerzitet u Beogradu
Faculty
Fizički fakultet
Alternative title
Kurantovi algebroidi u bozonskoj teoriji struna
Publisher
[I. Ivanišević]
Format
IX, 128 str.
description
Physics - String theory / Fizika -: Teorija struna
Abstract (en)
Generalized geometry is a new mathematical paradigm in which vectors and 1-forms are united and
investigated as single objects - generalized vectors. In this dissertation, we explore symmetries of
bosonic string theory and their relations with T-duality in the formalism of generalized geometry. The
generator of both diffeomorphisms and local gauge transformations is constructed and expressed as an
O(D, D) invariant inner product of two generalized vectors. In the same way that the Poisson bracket
algebra of generators of diffeomorphism gives rise to the Lie bracket, the algebra of the extended
generators gives rise to the Courant bracket. Taking into account the T-duality relation between two
string symmetries, we interpret the Courant bracket as the T-dual extension of the Lie bracket [1].
We then develop a simple procedure for twisting the Courant bracket with any O(D, D) transfor-
mation, allowing us to obtain Courant brackets deformed with different fluxes. The crux of this method
consists of expressing the generator in the basis of non-canonical currents, which are connected with
canonical variables via the O(D, D) transformation. We show that the Poisson bracket algebra of gen-
erators in the basis of currents closes on the appropriate twisted Courant bracket. We prove that there
is a natural way to define a Courant algebroid using these twisted Courant brackets. We provide many
examples of O(D, D) transformations and their corresponding twisted Courant brackets, including
the B-twisted Courant bracket and the θ-twisted Courant bracket. The B-twisted Courant bracket is
characterized by H flux appearing in the algebra of currents, while the θ-twisted Courant bracket is
characterized by the so-called non-geometric Q and R fluxes. It has been shown that these brackets
are mutually T-dual [2].
In addition, we construct the generator that produces the Courant bracket twisted simultaneously
by B and θ in its Poisson bracket algebra. This generator is expressed in terms of currents that contain
all string fluxes in their Poisson bracket relations. Moreover, we show that the Courant bracket twisted
simultaneously by B and θ is invariant under the T-duality [3]. We also demonstrate that all fluxes
can exist on the Dirac structures associated with the Courant algebroid for this bracket, without any
restrictions imposed on fluxes.
In the end, results are generalized to a double theory, in which variables depend on both initial and
T-dual coordinates. The algebra of generators that include both initial and T-dual diffeomorphisms
ii
closes on the double field extension of the Courant bracket called C-bracket. Following the same pro-
cedure as in the single theory, we obtained the B-twisted and θ-twisted C-brackets [4]. We demonstrate
that by projecting the twisted C-brackets to the initial and T-dual phase spaces, the mutually T-dual
twisted Courant brackets are obtained.
Abstract (sr)
Generalisana geometrija podrazumeva novu matematičku paradigmu u kojoj se vektori i 1-forme ob-
jedinjuju i razmatraju kao jedinstveni objekti - generalisani vektori. U ovoj disertaciji istražujemo
simetrije bozonske teorije struna i njihove veze sa T-dualnošću korišćenjem formalizma generalisane
geometrije. Konstruisan je jedinstven generator difeomorfizama i lokalnih gradijentnih transformacija
i predstavljen kao O(D, D) invarijantan skalarni proizvod između dva generalisana vektora. Na isti
način kao što u algebri Poasonovih zagrada generatora difeomorfizama nastaje Lijeva zagradi, alge-
bra proširenog generatora daje Kurantovu zagradu. Uzimajući u obzir T-dualne veze između ove dve
simetrije, Kurantova zagrada je interpretirana kao ekstenzija Lijeve zagrade invarijantna na T-dualnost
[1].
Zatim razvijamo jednostavnu proceduru za pronalaženje Kurantovih zagrada zavrnutih proizvoljnim
O(D, D) transformacijama, što nam omogućava da dobijemo Kurantove zagrade deformisane ra-
zličitim fluksevima. Osnova metode je predstavljanje generatora u bazisu nekanonskih struja, koje
su O(D, D) transformacijom povezane sa kanonskim promenljivama. Pokazano je da se algebra Poa-
sonovih zagrada između generatora izraženih preko struja zatvara na odgovarajućoj zavrnutoj Kuran-
tovoj zagradi. Dokazano je i da takva zavrnuta Kurantova zagrada definiše na prirodan način Kuran-
tov algebroid. Dali smo više primera O(D, D) transformacija i odredili njima odgovarajuće zavrnute
Kurantove zagrade, uključujući i B-zavrnutu i θ-zavrnutu Kurantovu zagradu. Kurantovu zagradu za-
vrnutu poljem B karakteriše pojavljivanje H fluksa u algebri struja, dok Kurantovu zagradu zavrnutu
poljem θ karakteriše pojavljivanje takozvanih negeometrijskih Q i R flukseva. Pokazano je da su ove
dve zagrade međusobno T-dualne [2].
Dodatno, konstruisan je i generator koji daje Kurantovu zagradu istovremeno zavrnutu poljima B
i θ. Ovaj generator izražen je preko pomoćnih struja u čijim algebarskim relacijama izraženim preko
Poasonovih zagrada se dobijaju svi fluksevi teorije struna. Dodatno, pokazali smo da je na ovakav način
zavrnuta Kurantova zagrada i invarijantna na T-dualnost [3]. Takođe smo pokazali da svi fluksevi mogu
postojati na Dirakovim strukturama Kurantovog algebroida definisanog ovom zagradom, bez ikakvih
ograničenja na tim fluksevima.
Na kraju, uopštili smo rezultate na duplu teoriju, u kojoj sve promenljive zavise i od početnih i
iv
od T-dualnih koordinata. Algebra generatora koji obuhvata difeomorfizme i T-dualne difeomorfizme
zatvara se na C-zagradi, što je generalizacija Kurantove zagrade na dupli fazni prostor. Koristeći
se istom procedurom kao i u nedupliranoj teoriji, dobili smo C-zagrade zavrnute poljima B i θ [4].
Projektujući ove zagrade na međusobno T-dualne fazne prostore, dobili smo međusobno T-dualne
zavrnute Kurantove zagrade
Authors Key words
Bosonic string, T-duality, Generalized geometry
Authors Key words
Bozonska struna, T-dualnost, Generalisana geometrija
Classification
539.120.5:539.129.3(043.3)
Type
Tekst
Abstract (en)
Generalized geometry is a new mathematical paradigm in which vectors and 1-forms are united and
investigated as single objects - generalized vectors. In this dissertation, we explore symmetries of
bosonic string theory and their relations with T-duality in the formalism of generalized geometry. The
generator of both diffeomorphisms and local gauge transformations is constructed and expressed as an
O(D, D) invariant inner product of two generalized vectors. In the same way that the Poisson bracket
algebra of generators of diffeomorphism gives rise to the Lie bracket, the algebra of the extended
generators gives rise to the Courant bracket. Taking into account the T-duality relation between two
string symmetries, we interpret the Courant bracket as the T-dual extension of the Lie bracket [1].
We then develop a simple procedure for twisting the Courant bracket with any O(D, D) transfor-
mation, allowing us to obtain Courant brackets deformed with different fluxes. The crux of this method
consists of expressing the generator in the basis of non-canonical currents, which are connected with
canonical variables via the O(D, D) transformation. We show that the Poisson bracket algebra of gen-
erators in the basis of currents closes on the appropriate twisted Courant bracket. We prove that there
is a natural way to define a Courant algebroid using these twisted Courant brackets. We provide many
examples of O(D, D) transformations and their corresponding twisted Courant brackets, including
the B-twisted Courant bracket and the θ-twisted Courant bracket. The B-twisted Courant bracket is
characterized by H flux appearing in the algebra of currents, while the θ-twisted Courant bracket is
characterized by the so-called non-geometric Q and R fluxes. It has been shown that these brackets
are mutually T-dual [2].
In addition, we construct the generator that produces the Courant bracket twisted simultaneously
by B and θ in its Poisson bracket algebra. This generator is expressed in terms of currents that contain
all string fluxes in their Poisson bracket relations. Moreover, we show that the Courant bracket twisted
simultaneously by B and θ is invariant under the T-duality [3]. We also demonstrate that all fluxes
can exist on the Dirac structures associated with the Courant algebroid for this bracket, without any
restrictions imposed on fluxes.
In the end, results are generalized to a double theory, in which variables depend on both initial and
T-dual coordinates. The algebra of generators that include both initial and T-dual diffeomorphisms
ii
closes on the double field extension of the Courant bracket called C-bracket. Following the same pro-
cedure as in the single theory, we obtained the B-twisted and θ-twisted C-brackets [4]. We demonstrate
that by projecting the twisted C-brackets to the initial and T-dual phase spaces, the mutually T-dual
twisted Courant brackets are obtained.
“Data exchange” service offers individual users metadata transfer in several different formats. Citation formats are offered for transfers in texts as for the transfer into internet pages. Citation formats include permanent links that guarantee access to cited sources. For use are commonly structured metadata schemes : Dublin Core xml and ETUB-MS xml, local adaptation of international ETD-MS scheme intended for use in academic documents.